

26<sup>th</sup> August 2014

# FOR IMMEDIATE RELEASE

## ANNOUNCEMENT BY NEW TALISMAN GOLD MINES LIMITED (NTL, NTLOA or NTLO)

## RAHU RESOURCE DECLARED AND APPLICATION LODGED

New Talisman Gold Mines today announces that it has filed an application for an Extension of Land (EOL) to incorporate the Rahu exploration permit into the Talisman mining permit (MP51326) following a resource being declared over Rahu. NTL have worked diligently with an independent geologist and believe that the criteria set out in the minerals program in order to apply for an EOL have been met.

Key to these criteria is the declaration of an indicated resource. An independent report filed with the application declares an inferred and indicated resource of 2,394,573 tonnes at 0.54g/t gold for 41,591oz gold using a cutoff grade of 0.3g/t and 258,419oz Ag. This has been based around the extensive work conducted by NTL over the period it has held the Rahu exploration permit. The Company has applied for the EOL as a contiguous piece of land to the Talisman MP. This required successfully obtaining consent to overlap a small piece of land held by another mining company. The resources are tabulated below.

|           | Lower cut off (g/t) | Tonnes    | Au g/t | Au Oz  | Ag (g/t) | Ag Oz   |
|-----------|---------------------|-----------|--------|--------|----------|---------|
| Indicated | (0.3)               | 277,669   | 0.6    | 5,327  | 8.79     | 78,430  |
| Inferred  | (0.3)               | 2,116,904 | 0.53   | 36,264 | 2.64     | 179.989 |
| Total     | (0.3)               | 2,394,573 | 0.54   | 41,591 | 3.36     | 258.419 |

Refer Appendix 1 : Jorc Code, 2012 edition – Table 1

### Background on Rahu

From having made a discovery at Rahu and demonstrating the geology is an extension of the Talisman Vein system NTL has applied to include Rahu as part of its Talisman Mining Permit.

NTL have completed some 2,492m of drilling at Rahu which, together with previous drilling campaigns and geological investigations, provides evidence that mineralisation and alteration present at Rahu represent the upper levels of and northern extension of the Talisman epithermal gold system. Most of the drilling has intersected broad zones of low-medium grade Au and Ag mineralization with narrower higher grade intervals. This is characteristic of the upper parts of an epithermal system. Highly mineralised quartz vein fragments (up to 7.6g/t Au) in hydrothermal breccia zones present within drill core attest to the presence of deeper higher-grade quartz veining that is characteristic of the veins mined within the Talisman Mine and provides further evidence that Rahu is an extension of the Talisman. The EOL to include Rahu in the Talisman MP will allow for a natural extension of mining operations from the Talisman.



## Coromandel Gold Limited

As previously announced through its exploration arm Coromandel Gold Limited "CGL", NTL is working with CGL to develop a work program over the Talisman permit to exploit target areas which may include Rahu. CGL representatives are currently in discussions with a major gold producer regarding the potential for a joint venture arrangement on NTL's exploration targets at Rahu.

Matthew Hill said "Whilst continuing to complete steps toward the Talisman Mine, the technical team have completed a significant body of work to make an application on Rahu and have met the criteria set out in the minerals program. It has always been our view that Rahu is an extension of the Talisman Vein systems and would become part of the longer term future of the sustainable mining development at the Talisman mine. The Rahu deposit has increased the Talisman Groups total resources by approx. 25% to just under 250,000 oz of Gold."

Matthew Hill CEO New Talisman Gold Mines Limited Direct +64 27 5557737 Matt@newtalisman.co.nz

Media Enquiries contact Jillian Talbot at Reach Consulting on +64 21 493820 or at <u>Jillian@reachconsulting.co.nz</u>

#### Competent Person Statement

The information in this report that relates to Exploration Targets, Exploration Results, and Mineral Resources is based on information compiled by Murray Stevens, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Stevens is employed by Stevens and Associates and is an independent consultant engaged by New Talisman Goldmines Limited from time to time on a consulting basis. Mr Stevens has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Stevens consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

#### About New Talisman Gold Mines Ltd

New Talisman Gold is a dual listed (NZSX & ASX: NTL) with 1800 shareholders who are mainly from Australia and New Zealand. It is a leading New Zealand minerals development and exploration company with a portfolio of high quality mineral interests. Its gold properties near Paeroa in the Hauraki District of New Zealand are a granted mining permit, including a JORC compliant mineral resource within the original Talisman underground mine, and an adjacent exploration permit along strike from the mine. The company is now advancing its plans to develop the mine, and advance the exploration project.

Through a subsidiary company, New Talisman Gold owns 21.7% of Broken Hill Prospecting Limited, which is planning to develop a cobalt project at Thackaringa, about 25 kilometres south-west of Broken Hill in Australia. BPL is listed on both the ASX and NZSX (Code: BPL).

More about New Talisman Gold at <u>www.newtalismangold.co.nz</u>

## APPENDIX 1: JORC CODE, 2012 EDITION – TABLE 1 JORC Code, 2012 Edition – Table 1

## Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques   | Nature and quality of sampling (eg cut channels,<br>random chips, or specific specialised industry<br>standard measurement tools appropriate to the<br>minerals under investigation, such as down hole<br>gamma sondes, or handheld XRF instruments, etc).<br>These examples should not be taken as limiting the<br>broad meaning of sampling.<br>Include reference to measures taken to ensure<br>sample representivity and the appropriate<br>calibration of any measurement tools or systems<br>used.<br>Aspects of the determination of mineralisation that<br>are Material to the Public Report.<br>In cases where 'industry standard' work has been<br>done this would be relatively simple (eg 'reverse<br>circulation drilling was used to obtain 1 m samples<br>from which 3 kg was pulverised to produce a 30 g<br>charge for fire assay'). In other cases more<br>explanation may be required, such as where there is<br>coarse gold that has inherent sampling problems.<br>Unusual commodities or mineralisation types (eg<br>submarine nodules) may warrant disclosure of<br>detailed information. | Surface sampling comprised C-horizon soil sampling,<br>rock outcrop sampling, chip sampling and<br>underground channel sampling using standard industry<br>techniques.<br>RC drill samples collected through cyclone and cone<br>and quartered, at 1m intervals, approx. 5kg placed in<br>labelled plastic sample bags, residue retained for check<br>sampling, skeleton kept for logging reference.<br>Diamond core sampling, based on determination of<br>mineralization from logging, all core halved using<br>diamond saw, mineralized intervals sampled on<br>nominal 1m lengths or to geological boundaries.<br>Remainder of non mineralised material sampled on 2m<br>intervals.<br>A comprehensive system of logging procedures used<br>as described in the following sections.<br>Samples dispatched to SGS Waihi laboratories where<br>pulverized subsamples used for 50g Fire Assay<br>determinations for Au with AAS finish and AAS<br>determination for Ag and basemetals. |
| Drilling<br>techniques   | <ul> <li>Drill type (eg core, reverse circulation, open-hole<br/>hammer, rotary air blast, auger, Bangka, sonic,<br/>etc) and details (eg core diameter, triple or<br/>standard tube, depth of diamond tails, face-<br/>sampling bit or other type, whether core is<br/>oriented and if so, by what method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Reverse Circulation percussion for the first holes<br/>drilled by NTL used 5.5inch face sampling hammer.</li> <li>Diamond core all PQTT to competent ground and<br/>then HQTT to completion. All core oriented using<br/>plasticene and holes surveyed with Eastman multi<br/>or single shot cameras every 50m and at end of<br/>hole.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Drill sample<br>recovery | <ul> <li>Method of recording and assessing core and chip<br/>sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery<br/>and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample<br/>recovery and grade and whether sample bias<br/>may have occurred due to preferential loss/gain<br/>of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>RC samples visually checked and noted intervals with poor recovery</li> <li>Diamond core was measured by drillers on site and again by site geologist who recorded run length, measured core recovered and calculated recovery. Data entered into database.</li> <li>Use of triple tube coring maximizes core recovery and ensures maximizing core integrity.</li> <li>No known sample bias is likely to have occurred using the sample techniques employed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Logging                  | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>RC chips were logged onto paper logs on site by<br/>the site geologist and checked by the supervising<br/>geologist, noting lithology, mineralization, water<br/>content, issues such as uphole contamination.</li> <li>Core logging follows detailed regime of geological<br/>logging, noting core orientations of structures,<br/>lithology, mineralization, structure, core<br/>photography, geotechnical logging undertaken by<br/>experienced field geologists and senior geologists.</li> <li>Logging quality suitable for use and appropriate for<br/>resource estimation purposes.</li> <li>Overall core recovery 92%</li> </ul>                                                                                                                                                                                                                                                                                                                                       |

| Criteria                                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sub-<br>sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all subsampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>Core sawn in half. Half taken for sampling, half retained for reference logging, petrology, check logging.</li> <li>RC samples collected through cyclone, roll mixed, cone and quartered.</li> <li>Sampling was undertaken by professional geologists under supervision using a set of QAQC measures recommended by independent consultants RSG Global who reviewed the procedures.</li> <li>Field duplicates were taken every 10<sup>th</sup> sample and a preparation duplicate taken every alternate 10<sup>th</sup> sample.</li> <li>Results show good correlation between original samples and field and preparation duplicates.</li> <li>Use of PQ and HQ core provides a larger sample and more representativity.</li> </ul>                                                                                                                                                                                                                                                                                                   |
| Quality of<br>assay data<br>and<br>laboratory<br>tests      | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul>                                                                            | <ul> <li>All assays including the historic drill data used were carried out by certified assay laboratories. NTL used SGS in Waihi using their standard sample preparation and analytical procedures and internal quality control procedures. All gold assays used a 50g charge fire assay with AAS finish and a detection limit of 0.01ppm.</li> <li>NTL employed a system of field duplicates off the primary crush, preparation duplicates off the 2kg pulverized material with a 50g subsample for the fire assay. The prep duplicate was taken to check for lab preparation consistency, induced nugget effect from over grinding, etc.</li> <li>Blanks of barren material were introduced every 30 samples and a system of certified standards obtained from RockLabs inserted every 10<sup>th</sup> sample.</li> <li>Approximately 10% of the samples from mineralized intervals were sent as umpire samples to Amdel Laboratories at the Macraes site in Central Otago for check sampling against the original SGS samples.</li> </ul> |
| Verification<br>of sampling<br>and<br>assaying              | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Significant intervals were calculated initially manually but subsequently checked and revised using the compositing functions in CAE software product Down Hole Explorer and also within Datamine Studio software. This has been carried out by company personnel and independently.</li> <li>Assay data adjustments of a minor nature were required. The only significant data issue concerned a data entry error in Amoco Hole 6 where a 0.07g/t Au interval was incorrectly entered as 7.00g/t Au. This has been corrected.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Location of<br>data points                                  | <ul> <li>Accuracy and quality of surveys used to locate<br/>drill holes (collar and down-hole surveys),<br/>trenches, mine workings and other locations used<br/>in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Drill holes were located and planned using hand<br/>held Garmin or Silva GPS units, grid surveys for<br/>geophysics used backpack GPS units. Once drill<br/>holes had been completed registered surveyors<br/>surveyed the hole positions.</li> <li>Downhole surveys at 50m intervals using Eastman<br/>single or multi-shot cameras were used.</li> <li>Grid system used historically was MT Eden Circuit.</li> <li>NTL used NZMG(1949) and converted all earlier<br/>data to this grid system.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Topographic and survey control is considered<br/>adequate for the purpose that the data is being<br/>used.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Data<br>spacing and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                                             | <ul> <li>At the Barbara North resource area drill hole spacing ranges from 25 to 50m and is considered sufficient for part of this zone to be modelled as Indicated.</li> <li>At the other 3 zones, namely Barbara North Extended, Barbara Central and Barbara South the holes used for the estimate ranged in spacing from 25 to more than 50m apart but there was only sufficient continuity to ascribe them to Inferred.</li> <li>The majority of samples intervals were at near one meter intervals and compositing was not deemed appropriate.</li> </ul>                                                                  |
| Orientation<br>of data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves<br/>unbiased sampling of possible structures and the<br/>extent to which this is known, considering the<br/>deposit type.</li> <li>If the relationship between the drilling<br/>orientation and the orientation of key<br/>mineralised structures is considered to have<br/>introduced a sampling bias, this should be<br/>assessed and reported if material.</li> </ul> | <ul> <li>The structures at Rahu are generally NE trending<br/>and steeply dipping to the NW. Drill holes are<br/>designed to be inclined and to cross the structures<br/>perpendicular to strike.</li> <li>Sampling bias based on the knowledge of the<br/>structure is considered unlikely.</li> </ul>                                                                                                                                                                                                                                                                                                                         |
| Sample<br>security                                                  | • The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Samples are collected on site by NTL personnel, either senior field technician or site geologist, transported to NTL's core and sample handling facility in Waihi. Here samples are prepared for dispatch to the assay laboratory. At night the facility is locked and during the drill programme security patrols used.</li> <li>Once samples are prepared they are transported the approx. 100m to the SGS assay facility for preparation and analysis.</li> <li>NTL has a system of order and dispatch numbering for sample tracking.</li> <li>Once delivered to SGS their protocols for security apply.</li> </ul> |
| Audits or<br>reviews                                                | • The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>RSG Global reviewed the QAQC procedures for the<br/>Talisman project in 2005 and these same<br/>procedures have been applied to all NTL's projects<br/>including Rahu.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                            | JC | DRC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                             | Сс | ommentary                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement<br>and land<br>tenure<br>status | •  | Type, reference name/number, location and<br>ownership including agreements or material<br>issues with third parties such as joint<br>ventures, partnerships, overriding royalties,<br>native title interests, historical sites,<br>wilderness or national park and<br>environmental settings.<br>The security of the tenure held at the time of<br>reporting along with any known impediments<br>to obtaining a licence to operate in the area. | •  | Work carried out under Exploration Permit 40117 held by New<br>Talisman Gold Mines Limited, located in the Waihi District. Permit<br>is wholly owned.<br>Land on which project sited is privately owned with agreements in<br>place with landowners for exploration. Some portions<br>administered by Department of Conservation where work has<br>been conducted under access arrangement.<br>Tenure is secure at time of reporting |
| Exploration                                         | •  | Acknowledgment and appraisal of                                                                                                                                                                                                                                                                                                                                                                                                                  | •  | Previous exploration has been carried out by Amoco Minerals,                                                                                                                                                                                                                                                                                                                                                                         |

| Criteria                    | JORC Code explanation                                                                    | Commentar                                             | 'Y                                               |                                             |                                           |                               |                     |               |
|-----------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------|---------------------|---------------|
| done by<br>other<br>parties | exploration by other parties.                                                            | (later ch<br>when N <sup>-</sup><br>the pern          | anged name<br>TL (formerly<br>nit.               | to Cyprus<br>Heritage Go                    | mines Corpo<br>old) applied               | oration)<br>for and           | until 19<br>was gra | 992<br>anted  |
| Geology                     | <ul> <li>Deposit type, geological setting and style of<br/>mineralisation.</li> </ul>    | <ul> <li>The Rah<br/>is the no<br/>Karanga</li> </ul> | u deposit is a<br>orthern exter<br>hake, a 4 plu | a low sulph<br>nsion of the<br>ns kilometer | idation epit<br>veins mine<br>long vein s | hermal v<br>d to the<br>ystem | vein sys<br>south a | tem and<br>at |
| Drill hole                  | • A summary of all information material to the                                           | BHID                                                  | Easting                                          | Northing                                    | RL                                        | Az                            | Incl                | Length        |
| Information                 | understanding of the exploration results                                                 | R1                                                    | 2751350                                          | 6417440                                     | 78                                        | 90                            | -60                 | 90.1          |
|                             | including a tabulation of the following                                                  | R2                                                    | 2751800                                          | 6417530                                     | 133                                       | 100                           | -50                 | 126.5         |
|                             | <ul> <li>easting and northing of the drill hole</li> </ul>                               | R3                                                    | 2751945                                          | 6417045                                     | 164                                       | 270                           | -45                 | 319.9         |
|                             | collar                                                                                   | R4                                                    | 2752075                                          | 6417416                                     | 149                                       | 270                           | -45                 | 329.7         |
|                             | <ul> <li>elevation or RL (Reduced Level –</li> </ul>                                     | R5                                                    | 2752170                                          | 6417750                                     | 129                                       | 300                           | -45                 | 171.6         |
|                             | elevation above sea level in metres) of<br>the drill hole collar                         | R6                                                    | 2752170                                          | 6416740                                     | 105                                       | 293                           | -45                 | 321.6         |
|                             | <ul> <li>dip and azimuth of the hole</li> </ul>                                          | R7                                                    | 2751385                                          | 6417480                                     | 82                                        | 340                           | -45                 | 101.9         |
|                             | o down hole length and interception depth                                                | R8                                                    | 2751110                                          | 6417700                                     | 139                                       | 150                           | -50                 | 88.0          |
|                             | <ul> <li>hole length.</li> </ul>                                                         | R9                                                    | 2751560                                          | 6416720                                     | 203                                       | 110                           | -40                 | 140.9         |
|                             | • If the exclusion of this information is justified                                      | R10                                                   | 2751110                                          | 6417700                                     | 139                                       | 0                             | -90                 | 101.8         |
|                             | on the basis that the information is not<br>Material and this exclusion does not detract | R11                                                   | 2751530                                          | 6416725                                     | 192                                       | 110                           | -65                 | 113.5         |
|                             | from the understanding of the report, the                                                | R12                                                   | 2751400                                          | 6416775                                     | 165                                       | 110                           | -45                 | 187.1         |
|                             | Competent Person should clearly explain why this is the case.                            | RHRC-1                                                | 2752096                                          | 6417928                                     | 142                                       | 120                           | -60                 | 25.5          |
|                             |                                                                                          | RHRC-2                                                | 2751865                                          | 6417682                                     | 115                                       | 110                           | -60                 | 24.0          |
|                             |                                                                                          | RHRC-3                                                | 2752301                                          | 6417922                                     | 167                                       | 110                           | -60                 | 30.0          |
|                             |                                                                                          | RHRC-4                                                | 2752214                                          | 6417892                                     | 153                                       | 290                           | -60                 | 32.0          |
|                             |                                                                                          | RHRC-5                                                | 2751708                                          | 6417109                                     | 164                                       | 110                           | -60                 | 14.0          |
|                             |                                                                                          | RHRC-6                                                | 2751701                                          | 6416977                                     | 182                                       | 110                           | -60                 | 29.8          |
|                             |                                                                                          | RHRC-7                                                | 2751684                                          | 6416825                                     | 205                                       | 110                           | -60                 | 31.0          |
|                             |                                                                                          | RHRC-8                                                | 2751723                                          | 6416798                                     | 207                                       | 110                           | -60                 | 45.8          |
|                             |                                                                                          | RHDD-01                                               | 2752259                                          | 6417953                                     | 165                                       | 108                           | -55                 | 144.1         |
|                             |                                                                                          | RHDD-02                                               | 2751835                                          | 6417669                                     | 111                                       | 107                           | -60                 | 127.6         |
|                             |                                                                                          | RHDD-03                                               | 2751726                                          | 6417485                                     | 130                                       | 106                           | -52                 | 119.9         |
|                             |                                                                                          | RHDD-04                                               | 2751679                                          | 6417117                                     | 156                                       | 110                           | -75                 | 112.8         |
|                             |                                                                                          | RHDD-05                                               | 2751695                                          | 6416835                                     | 206                                       | 110                           | -45                 | 241.7         |
|                             |                                                                                          | RHDD-06                                               | 2751973                                          | 6417187                                     | 154                                       | 290                           | -57                 | 121.3         |
|                             |                                                                                          | RHDD-07                                               | 2752062                                          | 6417054                                     | 138                                       | 290                           | -47                 | 219.6         |
|                             |                                                                                          | RHDD-08                                               | 2751787                                          | 6417628                                     | 120                                       | 110                           | -70                 | 167.9         |
|                             |                                                                                          | RHDD-09                                               | 2752132                                          | 6417978                                     | 141                                       | 110                           | -45                 | 310.0         |
|                             |                                                                                          | RHDD-10                                               | 2751573                                          | 6417645                                     | 116                                       | 110                           | -60                 | 449.9         |
|                             |                                                                                          | RHDD-11                                               | 2751554                                          | 6417084                                     | 131                                       | 90                            | -60                 | 245.8         |
|                             |                                                                                          |                                                       |                                                  |                                             |                                           |                               | <u> </u>            |               |
|                             |                                                                                          | BHID                                                  | From (m)                                         | 10 (m)                                      | Int                                       | Au g/t                        | A                   | gg/t          |
|                             |                                                                                          | K01                                                   | 3.00                                             | 11.00                                       | 8.00                                      | C                             | 0.45                | 4.93          |
|                             |                                                                                          | R01                                                   | 38.00                                            | 41.00                                       | 3.00                                      | C                             | 0.58                | 3.50          |
|                             |                                                                                          | R01                                                   | 56.00                                            | 59.00                                       | 3.00                                      | C                             | 0.57                | 1.00          |
|                             |                                                                                          | K01                                                   | 69.20                                            | 87.00                                       | 17.80                                     |                               | 0.48                | 6.95          |
|                             |                                                                                          | RU1                                                   | 69.20                                            | 90.10                                       | 20.90                                     | C                             | 0.47                | 6.29          |
|                             |                                                                                          | K01                                                   | 74.70                                            | 90.10                                       | 15.40                                     |                               | 0.58                | 7.75          |
|                             |                                                                                          | KU2                                                   | 20.20                                            | 45.50                                       | 25.30                                     | C                             | 0.34                | 5.92          |
|                             |                                                                                          | KU2                                                   | 20.20                                            | 32.60                                       | 12.40                                     |                               | 0.43                | 3.17          |
|                             |                                                                                          | KU3                                                   | 50.70                                            | 52.00                                       | 1.30                                      |                               | 0.31                | 1.60          |
|                             |                                                                                          | ROS                                                   | 50.00<br>66.00                                   | 72 00                                       | 2.00<br>6.00                              |                               | .30                 | 2 52          |
|                             |                                                                                          | 100                                                   | 00.00                                            | 12.00                                       | 0.00                                      |                               |                     | 5.55          |

| Criteria | JORC Code explanation | Commentary | ,              |        |              |      |              |
|----------|-----------------------|------------|----------------|--------|--------------|------|--------------|
|          |                       | R07        | 18.00          | 22.00  | 4.00         | 0.92 | 11.00        |
|          |                       | R07        | 26.00          | 40.00  | 14.00        | 1 40 | 4 01         |
|          |                       | R07        | 34.00          | 38.00  | 4 00         | 4 20 | 6.80         |
|          |                       | R07        | 51.00          | 56.00  | 5.00         | 0.42 | 2.00         |
|          |                       | R07        | 58.00          | 60.00  | 2.00         | 0.42 | 2.20         |
|          |                       | R07        | 62.00          | 64.00  | 2.00         | 0.48 | 1.20         |
|          |                       | R07        | 02.00          | 64.00  | 2.00         | 0.55 | 1.50         |
|          |                       | RU7        | 00.00          | 68.00  | 2.00         | 0.30 | 0.90         |
|          |                       | RU8        | 8.00           | 18.00  | 10.00        | 0.34 | 3.14         |
|          |                       | R09        | 22.00          | 30.00  | 8.00         | 0.29 | 0.90         |
|          |                       | R09        | 39.60          | 44.00  | 4.40         | 0.47 | 4.03         |
|          |                       | R10        | 20.00          | 22.00  | 2.00         | 0.31 | 2.30         |
|          |                       | R11        | 6.00           | 14.00  | 8.00         | 0.39 | 1.70         |
|          |                       | R11        | 26.00          | 30.00  | 4.00         | 0.33 | 0.40         |
|          |                       | R11        | 42.00          | 71.90  | 29.90        | 0.41 | 1.25         |
|          |                       | R11        | 48.20          | 49.20  | 1.00         | 0.40 | 0.50         |
|          |                       | R11        | 62.00          | 67.80  | 5.80         | 0.92 | 1.69         |
|          |                       | R12        | 38.00          | 48.00  | 10.00        | 0.32 | 0.88         |
|          |                       | R12        | 44.00          | 46.00  | 2.00         | 0.53 | 1.00         |
|          |                       | R12        | 62.00          | 68.00  | 6.00         | 0.55 | 1.40         |
|          |                       | R12        | 90.00          | 106.00 | 16.00        | 0.57 | 3.80         |
|          |                       | R12        | 100.00         | 104.00 | 4.00         | 1.47 | 5.05         |
|          |                       | R12        | 114.00         | 149.40 | 35.40        | 0.62 | 3.54         |
|          |                       | RHRC-2     | 4.00           | 5.00   | 1.00         | 0.45 | 8.40         |
|          |                       | RHRC-2     | 10.00          | 19.00  | 9.00         | 1.74 | 45.76        |
|          |                       | RHRC-3     | 7.00           | 30.00  | 23.00        | 0.92 | 2.03         |
|          |                       | RHRC-4     | 1.00           | 2.00   | 1.00         | 0.80 | 2.60         |
|          |                       | RHRC-4     | 6.00           | 7.00   | 1.00         | 0.46 | 4.70         |
|          |                       | RHRC-4     | 9.00           | 10.00  | 1.00         | 0.45 | 3.40         |
|          |                       | RHRC-6     | 15.00          | 26.00  | 11.00        | 0.42 | 0.27         |
|          |                       |            | 1.00           | 4.00   | 3.00         | 0.55 | 0.27         |
|          |                       | RHRC-8     | 24.00          | 21.00  | 7.00<br>4.00 | 0.71 | 0.20         |
|          |                       | RHRC-8     | 37.00          | 39.00  | 2.00         | 0.46 | 5.65         |
|          |                       | RHDD-01    | 15.00          | 46.00  | 31.00        | 0.65 | 1.92         |
|          |                       | RHDD-01    | 115.00         | 116.00 | 1.00         | 0.54 | 0.80         |
|          |                       | RHDD-01    | 124.00         | 127.00 | 3.00         | 0.64 | 0.73         |
|          |                       | RHDD-01    | 125.00         | 127.00 | 2.00         | 0.73 | 0.90         |
|          |                       | RHDD-02    | 36.00          | 60.00  | 24.00        | 0.93 | 13.87        |
|          |                       | RHDD-02    | 36.00          | 49.00  | 13.00        | 1.25 | 23.22        |
|          |                       | RHDD-02    | 52.00          | 57.00  | 5.00         | 0.82 | 2.16         |
|          |                       | RHDD-02    | 83.00          | 85.00  | 2.00         | 0.63 | 0.15         |
|          |                       | KHDD-03    | 33.00          | 50.00  | 17.00        | 0.75 | 4.67         |
|          |                       |            | /6.00          | 88.00  | 12.00        | 0.53 | 3.98         |
|          |                       | RHDD-04    | 54.00<br>67.00 | 68.00  | 1.00         | 0.40 | 1.3U<br>9.80 |
|          |                       | RHDD-04    | 79.00          | 84.00  | 5.00         | 0.32 | 1.28         |
|          |                       | RHDD-05    | 47.00          | 57.50  | 10.50        | 0.57 | 1.11         |
|          |                       | RHDD-05    | 64.00          | 67.00  | 3.00         | 0.69 | 0.15         |
|          |                       | RHDD-05    | 177.00         | 179.00 | 2.00         | 0.31 | 0.80         |
|          |                       | RHDD-05    | 204.00         | 206.00 | 2.00         | 0.72 | 2.30         |
|          |                       | RHDD-06    | 75.00          | 76.00  | 1.00         | 0.49 | 1.20         |
|          |                       | RHDD-06    | 85.00          | 86.00  | 1.00         | 0.52 | 0.60         |
|          |                       | RHDD-07    | 64.00          | 80.00  | 16.00        | 0.63 | 2.14         |
|          |                       | RHDD-07    | 64.00          | 83.00  | 19.00        | 0.58 | 2.05         |
|          |                       | RHDD-07    | 206.00         | 210.00 | 4.00         | 0.44 | 1.88         |

| Criteria                                                     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                     |                                                                                                                                   |                                                                                                             |                                                                                                                             |                                                                                                                          |                                                               |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RHDD-08                                                                                                        | 48.00                                                                                                                             | 50.00                                                                                                       | 2.00                                                                                                                        | 0.47                                                                                                                     | 8.60                                                          |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RHDD-08                                                                                                        | 67.00                                                                                                                             | 75.00                                                                                                       | 8.00                                                                                                                        | 0.45                                                                                                                     | 12.08                                                         |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RHDD-08                                                                                                        | 78.00                                                                                                                             | 91.00                                                                                                       | 13.00                                                                                                                       | 0.68                                                                                                                     | 3.82                                                          |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RHDD-08                                                                                                        | 81.00                                                                                                                             | 91.00                                                                                                       | 10.00                                                                                                                       | 0.74                                                                                                                     | 4.41                                                          |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RHDD-08                                                                                                        | 103.00                                                                                                                            | 106.00                                                                                                      | 3.00                                                                                                                        | 1.14                                                                                                                     | 0.23                                                          |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RHDD-09                                                                                                        | 30.00                                                                                                                             | 32.00                                                                                                       | 2.00                                                                                                                        | 1.26                                                                                                                     | 1.15                                                          |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RHDD-09                                                                                                        | 38.00                                                                                                                             | 54.00                                                                                                       | 16.00                                                                                                                       | 0.73                                                                                                                     | 0.90                                                          |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RHDD-09                                                                                                        | 170.00                                                                                                                            | 172.00                                                                                                      | 2.00                                                                                                                        | 0.42                                                                                                                     | 0.65                                                          |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RHDD-11                                                                                                        | 106.00                                                                                                                            | 111.00                                                                                                      | 5.00                                                                                                                        | 0.62                                                                                                                     | 2.26                                                          |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RHDD-11                                                                                                        | 114.00                                                                                                                            | 121.00                                                                                                      | 7.00                                                                                                                        | 0.72                                                                                                                     | 2.37                                                          |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RHDD-11                                                                                                        | 130.00                                                                                                                            | 139.00                                                                                                      | 9.00                                                                                                                        | 0.77                                                                                                                     | 3.59                                                          |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RHDD-11                                                                                                        | 143.00                                                                                                                            | 165.00                                                                                                      | 22.00                                                                                                                       | 0.51                                                                                                                     | 2.32                                                          |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                                                                                                   |                                                                                                             |                                                                                                                             |                                                                                                                          |                                                               |
| Data<br>aggregatio<br>n methods                              | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal activity of the stated and some typical examples of activity of the stated and some typical examples of any reporting of metal activity of the stated activity of the stated for any reporting of metal activity of the stated activity of the stated activity of the stated for any reporting of metal activity of the stated activity of the stated activity of the stated for activity of the stated for activity of the stated for any reporting of metal activity of the stated for activity of the</li></ul> | <ul> <li>Length w<br/>was appli<br/>incorpora<br/>below cu</li> <li>Not appli</li> <li>Not appli</li> </ul>    | eighting dow<br>ed. Occasior<br>ated where it<br>toff.<br>cable<br>icable                                                         | n hole wa<br>hally short<br>not resul                                                                       | as used. A lo<br>intervals be<br>t in the inter                                                                             | wer cutoff o<br>low cutoff a<br>rval overall f                                                                           | f 0.3g/t Au<br>re<br>alling                                   |
| Relationshi<br>p between<br>mineralisati<br>on widths<br>and | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Only dow<br/>transect to<br/>intervals</li> <li>Difference<br/>into the r</li> </ul>                  | n hole lengt<br>the mineraliz<br>can be slight<br>es in down h<br>esource esti                                                    | hs are rep<br>ed zones<br>ly oblique<br>lole interv<br>mate base                                            | orted. While<br>at right angl<br>als and true<br>ed on the est                                                              | e generally h<br>es the down<br>width are fa                                                                             | oles<br>hole<br>ictored<br>thodology.                         |
| intercept<br>lengths                                         | <ul> <li>nature should be reported.</li> <li>If it is not known and only the down hole<br/>lengths are reported, there should be a clear<br/>statement to this effect (eg 'down hole<br/>length, true width not known').</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |                                                                                                                                   |                                                                                                             |                                                                                                                             |                                                                                                                          |                                                               |
| Diagrams                                                     | <ul> <li>Appropriate maps and sections (with scales)<br/>and tabulations of intercepts should be<br/>included for any significant discovery being<br/>reported These should include, but not be<br/>limited to a plan view of drill hole collar<br/>locations and appropriate sectional views.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • These are                                                                                                    | e presented i                                                                                                                     | n the full                                                                                                  | report that t                                                                                                               | his table acc                                                                                                            | companies.                                                    |
| Balanced<br>reporting                                        | <ul> <li>Where comprehensive reporting of all<br/>Exploration Results is not practicable,<br/>representative reporting of both low and high<br/>grades and/or widths should be practiced to<br/>avoid misleading reporting of Exploration<br/>Results.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>All signific<br/>reported<br/>results ca<br/>this report</li> </ul>                                   | cant results a<br>in the tables<br>in be found i<br>rt.                                                                           | above the<br>above an<br>n the spat                                                                         | cutoff grade<br>d in the acco<br>ial data pack                                                                              | e of 0.3g/t A<br>ompanying r<br>kage that acc                                                                            | u are<br>eport. All<br>companies                              |
| Other<br>substantive<br>exploration<br>data                  | <ul> <li>Other exploration data, if meaningful and<br/>material, should be reported including (but<br/>not limited to): geological observations;<br/>geophysical survey results; geochemical<br/>survey results; bulk samples – size and<br/>method of treatment; metallurgical test<br/>results; bulk density, groundwater,<br/>geotechnical and rock characteristics;<br/>potential deleterious or contaminating</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>A compression consultar mapping</li> <li>Specific n stage how similar m been ach mineraliz</li> </ul> | chensive sum<br>at reviews, go<br>is presented<br>netallurgical<br>wever minera<br>ineralogy to<br>ieved in cyar<br>ation at Raho | imary a pr<br>eophysics,<br>in the acc<br>test work<br>agraphic e<br>Talisman<br>nidation st<br>u will beha | revious explo<br>surface san<br>companying<br>has not bee<br>examination<br>where 95% p<br>tudies. It is h<br>ave similarly | pration resul<br>npling, geolo<br>report.<br>n carried ou<br>of samples s<br>olus recover<br>ighly probat<br>to Talisman | ts,<br>gical<br>t at this<br>hows<br>ies have<br>lle that the |

| Criteria        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | substances.                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Further<br>work | <ul> <li>The nature and scale of planned further work<br/>(eg tests for lateral extensions or depth<br/>extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of<br/>possible extensions, including the main<br/>geological interpretations and future drilling<br/>areas, provided this information is not<br/>commercially sensitive.</li> </ul> | <ul> <li>Further drill testing to increase the resource is planned. This will involve step out and infill drilling and drilling to depth to increase the resource base, increase the grade, increase the resource category and as part of a feasibility study for incorporating the Rahu resources into the medium to long term planning for the expansion of the Talisman mine.</li> <li>Areas of possible extensions are shown on diagrams within the body of the report accompanying this table.</li> </ul> |

Section 3 Estimation and Reporting of Mineral Resources

| Criteria                     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Database<br>integrity        | <ul> <li>Measures taken to ensure that data has<br/>not been corrupted by, for example,<br/>transcription or keying errors, between its<br/>initial collection and its use for Mineral<br/>Resource estimation purposes.</li> <li>Data validation procedures used.</li> </ul>                                                                                                                                                                   | <ul> <li>Data was initially captured on paper logs and then entered into excel spreadsheets using standard logging templates to ensure consistency of data capture.</li> <li>Databases have been peer checked on a number of occasions over the duration of the permit.</li> <li>Data validation processes within Excel and in Datamine Studio and down Hole explorer software from CAE were used during the estimation process.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                    |
| Site visits                  | <ul> <li>Comment on any site visits undertaken by<br/>the Competent Person and the outcome of<br/>those visits.</li> <li>If no site visits have been undertaken<br/>indicate why this is the case.</li> </ul>                                                                                                                                                                                                                                   | <ul> <li>The Competent person has been involved with the project at<br/>several stages since 1992 and is familiar with surface geology,<br/>underground geology, historic core, RC sampling and NTL drill core<br/>having check logged both.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Geological<br>interpretation | <ul> <li>Confidence in (or conversely, the uncertainty of ) the geological interpretation of the mineral deposit.</li> <li>Nature of the data used and of any assumptions made.</li> <li>The effect, if any, of alternative interpretations on Mineral Resource estimation.</li> <li>The use of geology in guiding and controlling Mineral Resource estimation.</li> <li>The factors affecting continuity both of arade and aeology.</li> </ul> | <ul> <li>There is enough continuity based on drill hole geology, surface and underground mapping, geophysics and geochemistry to have confidence in the continuity of the geology for areas estimated.</li> <li>Surface mapping, resistivity modeling, downhole geology. Assumptions made are that the mineralized zones are steeply dipping to the NW. Alternative interpretations are unlikely to impact on the estimate.</li> <li>Geology particularly downhole was used to determine mineralization boundaries. Grade within these mineralized zones was then used for creating the wire frames for interpolation.</li> </ul>                                                                                                                                                                                                              |
| Dimensions                   | <ul> <li>The extent and variability of the Mineral<br/>Resource expressed as length (along strike<br/>or otherwise), plan width, and depth below<br/>surface to the upper and lower limits of the<br/>Mineral Resource.</li> </ul>                                                                                                                                                                                                              | <ul> <li>The models were generated by constructing sections at 25m intervals along strike using down hole geology and grade to determine width. Model sections were projected no more than 50m north or south of the northern or southern- most section and half way between drill sections when less than 50m. ie 25m or less.</li> <li>Down hole projections were up to 100m below the deepest intersection for wire frame construction and where there is reasonable confidence in depth continuity.</li> <li>Dimensions of each wireframe are as follows</li> <li>Barbara North Extended: 100m long by 100 to 150m deep, 8m to 20m wide. Volume 515,000cu.m</li> <li>Barbara Central: 275m long by 225m deep, 40m wide. Volume 3,258,000cu.m</li> <li>Barbara South:240m long by 250m deep, 2m to 8m wide. Volume 1,350,000cu.m</li> </ul> |

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

| Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Estimation<br>and<br>modelling<br>techniquesThe nature and appropriateness of the<br>estimation technique(s) applied and key<br>assumptions, including treatment of<br>extreme grade values, domaining,<br>interpolation parameters and maximum<br>distance of extrapolation from data points.<br>If a computer assisted estimation method<br>was chosen include a description of<br>computer software and parameters used.• The availability of check estimates,<br>previous estimates and/or mine production |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>The resource zone wireframes<br/>Mining by New Talisman Gold M</li> <li>Four resource zone wireframes<br/>separately. These are starting f<br/>and moving south; Barbara I<br/>Barbara Central and Barbara Soc</li> <li>These wireframes were then<br/>orientated orthogonally. An<br/>parameters applied.</li> </ul>                                                                                                                                                                                                                                                                   | were generated in Datamine/CAE<br>lines staff and validated.<br>were constructed and estimated<br>rom the north end of the project<br>North Extended, Barbara North,<br>uth.<br>filled with block model cells<br>nd the following estimation                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | records and whether the Mineral Resource                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Block Model And Estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Model And Estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | estimate takes appropriate account of such                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Parent Block Block Cell Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5m x 5m x5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>The assumptions made regarding recovery<br/>of by-products.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sub Cell Splitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Auto fill to maximum of 5m<br>x 5m x 5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • Estimation of deleterious elements or other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Estimation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inverse Distance Squared<br>and Nearest Neighbour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | non-grade variables of economic<br>significance (eg sulphur for goid mine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6 t/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | drainage characterisation).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Search radii (indicated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>In the case of block model interpolation,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Search radii (inferred)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the block size in relation to the average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Minimum no of samples<br>(Indicated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Any assumptions behind modelling of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Search Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | selective mining units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Minimum no of samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Any assumptions about correlation<br/>between variables.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maximum no of samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Description of how the geological                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Indicated and Inferred)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ο 3σ/τ Διι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | resource estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Top cut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| <ul> <li>Discussion of basis for using or not using grade cutting or capping.</li> <li>The process of validation, the checking process used, the comparison of model data to drill hole data, and use of</li> </ul>                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>The estimation was initially carried out using Inverse Distance<br/>Squared and then a check estimate using Nearest Neighbour (3D<br/>Polygonal). This was found to be within 2% of each other in terms<br/>of total ounces of gold.</li> </ul>                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>reconciliation data if available.</li> <li>Whether the tonnages are estimated on a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Estimates based on dry tonnages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dry basis or with natural moisture, and the method of determination of the moisture content.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Cut-off<br>parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • The basis of the adopted cut-off grade(s) or quality parameters applied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>A lower cut off of 0.3g/t was use<br/>resource estimates completed si<br/>2011 to 2012. This was also decid<br/>capturing all the mineralization v<br/>modelling.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                            | d based on other examples of<br>nce the price of gold increases in<br>ded as appropriate as it ensured<br>vithin the wireframe for                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Mining<br>factors or<br>assumptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Assumptions made regarding possible<br/>mining methods, minimum mining<br/>dimensions and internal (or, if applicable,<br/>external) mining dilution. It is always<br/>necessary as part of the process of<br/>determining reasonable prospects for<br/>eventual economic extraction to consider<br/>potential mining methods, but the<br/>assumptions made regarding mining<br/>methods and parameters when estimating<br/>Mineral Resources may not always be<br/>rigorous. Where this is the case, this should<br/>be reported with an explanation of the<br/>basis of the mining assumptions made.</li> </ul> | <ul> <li>The project is still at an early stag<br/>will need to quantify mining met<br/>adjacent to the Talsiman Mine w<br/>development phase as an initially<br/>Future expansion of the project w<br/>part. The current resources of ap<br/>but development of them in thei<br/>depend on factors such as an inc<br/>development cost utilizing the tr<br/>infrastructure being developed a<br/>part of the feasibility study there<br/>ounces and tonnages as more dr<br/>indicated and inferred into meas<br/>currently deemed geological pot<br/>Indicated category depending or</li> </ul> | ge and part of any feasibility study<br>hods etc. However the project lies<br>hich is currently in the<br>y small scale underground mine.<br>will include Rahu as an integral<br>pprox. 40,000 oz Au are low grade<br>r current state of knowledge will<br>rease in gold price and low<br>eatment facilities and other<br>t Talisman. It is expected that as<br>e would be an increase in grade,<br>illing will allow for moving<br>ured and indicated and what is<br>ential into an Inferred or<br>a results and drill density. |  |  |

| Criteria                                     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metallurgical<br>factors or<br>assumptions   | • The basis for assumptions or predictions<br>regarding metallurgical amenability. It is<br>always necessary as part of the process of<br>determining reasonable prospects for<br>eventual economic extraction to consider<br>potential metallurgical methods, but the<br>assumptions regarding metallurgical<br>treatment processes and parameters made<br>when reporting Mineral Resources may not<br>always be rigorous. Where this is the case,<br>this should be reported with an explanation<br>of the basis of the metallurgical<br>assumptions made.                                                                                                                                                                                                 | <ul> <li>Detailed metallurgical studies are yet to be completed on Rahu mineralization. However mineragraphic examination shows similarities to Talisman ore.</li> <li>The deposit is typical of the low sulphidation deposits in the Waihi Gold District which are by and large amenable to direct cyanidation, gravity separation of free gold and/or flotation concentrate cyanidation.</li> <li>There is no evidence at this stage of any deleterious minerals that would impact on processing.</li> </ul>                                                                                                                                                                                                                                                                                |
| Environmen-<br>tal factors or<br>assumptions | <ul> <li>Assumptions made regarding possible<br/>waste and process residue disposal options.<br/>It is always necessary as part of the process<br/>of determining reasonable prospects for<br/>eventual economic extraction to consider<br/>the potential environmental impacts of the<br/>mining and processing operation. While at<br/>this stage the determination of potential<br/>environmental impacts, particularly for a<br/>greenfields project, may not always be well<br/>advanced, the status of early consideration<br/>of these potential environmental impacts<br/>should be reported. Where these aspects<br/>have not been considered this should be<br/>reported with an explanation of the<br/>environmental assumptions made.</li> </ul> | <ul> <li>Most of the deposit lies on private land held under an Exploration<br/>Permit.</li> <li>Consents for mining will have to be applied for under the Resource<br/>Management Act 1987 from the local authorities.</li> <li>The local authorities have consented small and large scale mining<br/>projects in the District over the last 25 years including NTL's<br/>Talisman project in 2013.</li> <li>Provided the Company prepares sufficient environmental data to<br/>back up any development proposal it will be dealt with by the<br/>authorities on its merits.</li> </ul>                                                                                                                                                                                                      |
| Bulk density                                 | <ul> <li>Whether assumed or determined. If<br/>assumed, the basis for the assumptions. If<br/>determined, the method used, whether wet<br/>or dry, the frequency of the measurements,<br/>the nature, size and representativeness of<br/>the samples.</li> <li>The bulk density for bulk material must<br/>have been measured by methods that<br/>adequately account for void spaces (vugs,<br/>porosity, etc), moisture and differences<br/>between rock and alteration zones within<br/>the deposit.</li> <li>Discuss assumptions for bulk density<br/>estimates used in the evaluation process of<br/>the different materials.</li> </ul>                                                                                                                 | <ul> <li>The bulk density used in the estimate is 2.6g.cm<sup>-3</sup>. Individual determinations have not been made at Rahu however as a basis of deciding on the appropriate density the densities determined for Talisman were taken into account where an average density of 2.65g.cm<sup>-3</sup> was used. For this estimate it was decided to take a more conservative position and use 2.6g.cm<sup>-3</sup>.</li> <li>The bulk densities on which this estimate is based were determined at Auckland University and took into account voids and porosity.</li> <li>The bulk density for the resource modelling is based on quartzose material which based on the geological observations on the surface and in drill core accounts for the majority of the mineralisation.</li> </ul> |
| Classification                               | <ul> <li>The basis for the classification of the<br/>Mineral Resources into varying confidence<br/>categories.</li> <li>Whether appropriate account has been<br/>taken of all relevant factors (ie relative<br/>confidence in tonnage/grade estimations,<br/>reliability of input data, confidence in<br/>continuity of geology and metal values,<br/>quality, quantity and distribution of the<br/>data).</li> <li>Whether the result appropriately reflects<br/>the Competent Person's view of the<br/>deposit.</li> </ul>                                                                                                                                                                                                                                 | <ul> <li>The models were run using two search radii at 25m and again at 50m. While the 25m model produced results for all 4 areas it was considered that sample density was sufficient only at Barbara North for it to be considered as Indicated.</li> <li>All other areas and the balance of modeled volume at Barbara North based on the 50m search radii were classified as Inferred.</li> <li>These estimates assigned a resource category to approximately 0.93Mcu.m out of 5.4Mcu.m in the model. The rest being assigned as geological potential and described in the report accompanying this table.</li> <li>In the view of the Competent person this fairly represents the data and is considered conservative.</li> </ul>                                                         |
| Audits or<br>reviews                         | • The results of any audits or reviews of<br>Mineral Resource estimates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The report and data has been peer reviewed by NTL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Discussion of<br>relative                    | <ul> <li>Where appropriate a statement of the<br/>relative accuracy and confidence level in</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>All data used in the estimation was analysed statistically and no<br/>major issues detected that would question the reliability of the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Criteria                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| accuracy/<br>confidence | <ul> <li>the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.</li> <li>The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.</li> <li>These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.</li> </ul> | <ul> <li>data. A conservative approach was taken using an Inverse<br/>Distance Squared estimation method. The models were rerun<br/>using Nearest neighbour which gave higher grade and less tonnes<br/>than the Inverse Distance methodology.</li> <li>The estimation has been carried out on a conservative basis. The<br/>estimates and tonnages and grades are detailed in the report that<br/>accompanies this table.</li> </ul> |